AACP 2019 Paper Presentation Friday, February 8, 2019 (07:45 – 9:30 AM)

PREVENTION OF HYPERNATREMIA DURING PERIOPERATIVE PHASES OF CARDIOPULMONARY BYPASS IN PEDIATRICS: EVALUATION OF ACIDIC BIOMARKERS AND OPTIMIZATION OF SODIUM BICARBONATE ADMINISTRATION

Isaac Chinnappan; Monroe Carell Jr. Children's Hospital at Vanderbilt University, Nashville, TN

isaac.r.chinnappan.1@vumc.org

Monroe Carell Jr. Children's Hospital at Vanderbilt University, Nashville, TN

Hypernatremia is associated with numerous intra and post-operative complications that leads to longer hospital stay, morbidity and mortality especially in neonates and infants undergoing cardiopulmonary bypass (CPB) with Profound Hypothermic Perfusion (PHP). PHP and pH-stat acid-base management further influences hypercarbia status and the requirement of more Sodium Bicarbonate (NaHCO₃) to maintain normal pH, bicarbonate level (HCO₃) and acceptable base deficit. Addition of blood bank preserved acidic packed red blood Cells (PRBC's) requires more NaHCO₃ to buffer the CPB perfusate. Combination of all these interventions and intracellular acidity results in a static hypernatremia during rewarming and sustains till weaning from bypass and continues post-operatively. The objective of this study are to rationalize the administration of sodium bicarbonate during PHP, keeping acidic-biomarkers (pH, pCO₂, HCO₃ and base deficit) within near normal physiological limits and preventing hypernatremia during perioperative phases of CPB in neonates and infants.

Neonates and infants who required CPB-profound hypothermic perfusion and pH stat acid-base management during 2016 and 2018 were characterized in this study. Amount of NaHCO₃ given in the prime and during bypass and regulation of acidic-biomarkers (pH, pCO₂, HCO₃ and base deficit) were measured. In the control group, temperature corrected pH was maintained at 7.25-7.30, pCO₂ was maintained around 45-50 mmHg and End Tidal Carbon Dioxide (ETCO2) kept 40-45 mmHg. NaHCO₃ was administered to maintain bi-carbonate (HCO₃) around 26-28 mEq/L and base deficit (BE) between -2 to +2mEq/L at all levels of temperature. In study group, temperature corrected pH value was maintained at 7.35-7.45, pCO₂ kept around 30-35mmHg and End Tidal Carbon Dioxide (ETCO2) was maintained at 7.35-7.45, pCO₂ kept around 30-35mmHg and End Tidal Carbon Dioxide (ETCO2) was maintained 30-33mmHg. NaHCO₃ was administered to keep bi-carbonate (HCO₃) around 22-24 mEq/L. In both groups adjunct CO₂ was added that equals 4-5% of the ventilating (sweep) gas. NaHCO₃ was administered only after normalizing non-HCO₃ variables (pCO2, glucose, reservoir volume) and didn't administer if the sodium level was 145mEq/L and above.

PH PH stat Temp Corrected	PCO2 mmHg Temp Corrected	PCO2 mmHg Temp Not - Corrected	ETCO2 mmHg	HCO3 mEq/L	BE mEq/L	Na mEq/L	Osmolar Moles/Lit
CONTROL GROUP (n = 35)							
7.25 – 7.30	45 - 50	80 - 110	40 - 45	28 - 32	-2 to +2	155±5	358±8
STUDY GROUP (n = 35)							
7.35 – 7.45	30 - 35	50 - 70	30 - 33	22 - 24	Ignored	139±3	304±5

During perioperative CPB phase, in control group, serum sodium level was around 155±5 mEq/L and the perfusate was hyperosmolar (358±8) moles/L; and in the study group, serum sodium level was around 139±3 mEq/L and the osmolality was within physiological limits (358±8) moles/L. Less NaHCO₃ was administered in study group. Acidic biomarkers (pH, pCO₂, HCO₃ and base deficit) were regulated within near normal physiological limits. This approach facilitated prevention of hypernatremia during perioperative phases of CPB.

During CPB and profound hypothermic perfusion, keeping the acidic-biomarkers (pH, pCO₂, ETCO₂, HCO₃ and base deficit) within near normal acceptable physiological limits and prevention of over correction of metabolic acidosis with NaHCO₃ facilitates maintaining serum sodium level within safe and normal physiological limits and prevention of Hypernatremia.